A Hybrid Classification Approach Based on Support Vector Machine and K-Nearest Neighbor for Remote Sensing Data

Author:

Alimjan Gulnaz123,Sun Tieli1,Jumahun Hurxida3,Guan Yu12,Zhou Wanting1,Sun Hongguang1

Affiliation:

1. School of Computer Science and Information Technology, Northeast Normal University, Changchun 130117, P. R. China

2. School of Geographical Science, Northeast Normal University, Changchun 130024, P. R. China

3. Department of Electronics and Information Engineering, Yili Normal University, Yining 835000, P. R. China

Abstract

Analysis and classification for remote sensing landscape based on remote sensing imagery is a popular research topic. In this paper, we propose a new remote sensing data classifier by incorporating the support vector machine (SVM) learning information into the K-nearest neighbor (KNN) classifier. The SVM is well known for its extraordinary generalization capability even with limited learning samples, and it is very useful for remote sensing applications as data samples are usually limited. The KNN has been widely used in data classification due to its simplicity and effectiveness. However, the KNN is instance-based and needs to keep all the training samples for classification, which could cause not only high computation complexity but also overfitting problems. Meanwhile, the performance of the KNN classifier is sensitive to the neighborhood size [Formula: see text] and how to select the value of the parameter [Formula: see text] relies heavily on practice and experience. Based on the observations that the SVM can contribute to the KNN on the problems of smaller training samples size as well as the selection of the parameter [Formula: see text], we propose a support vector nearest neighbor (abbreviated as SV-NN) hybrid classification approach which can simplify the parameter selection while maintaining classification accuracy. The proposed approach is consist of two stages. In the first stage, the SVM is performed on the training samples to obtain the reduced support vectors (SVs) for each of the sample categories. In the second stage, a nearest neighbor classifier (NNC) is used to classify a testing sample, i.e. the average Euclidean distance between the testing data point to each set of SVs from different categories is calculated and the NNC identifies the category with minimum distance. To evaluate the effectiveness of the proposed approach, firstly experiments of classification for samples from remote sensing data are evaluated, and then experiments of identifying different land covers regions in the remote sensing images are evaluated. Experimental results show that the SV-NN approach maintains good classification accuracy while reduces the training samples compared with the conventional SVM and KNN classification model.

Funder

Changchun Science and Technology Bureau of China

Jilin Province Development and Reform Commission of China

National Natural Science Foundation of China

Xinjiang Province colleges scientific research plan key research projects of China

Publisher

World Scientific Pub Co Pte Ltd

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3