ACCURATE IMAGE RETRIEVAL BASED ON COMPACT COMPOSITE DESCRIPTORS AND RELEVANCE FEEDBACK INFORMATION

Author:

CHATZICHRISTOFIS SAVVAS A.1,ZAGORIS KONSTANTINOS1,BOUTALIS YIANNIS S.1,PAPAMARKOS NIKOS1

Affiliation:

1. Department of Electrical and Computer Engineering, Democritus University of Thrace, 12. Vas. Sofias, Xanthi, 67100, Greece

Abstract

In this paper a new set of descriptors appropriate for image indexing and retrieval is proposed. The proposed descriptors address the tremendously increased need for efficient content-based image retrieval (CBIR) in many application areas such as the Internet, biomedicine, commerce and education. These applications commonly store image information in large image databases where the image information cannot be accessed or used unless the database is organized to allow efficient storage, browsing and retrieval. To be applicable in the design of large image databases, the proposed descriptors are compact, with the smallest requiring only 23 bytes per image. The proposed descriptors' structure combines color and texture information which are extracted using fuzzy approaches. To evaluate the performance of the proposed descriptors, the objective Average Normalized Modified Retrieval Rank (ANMRR) is used. Experiments conducted on five benchmarking image databases demonstrate the effectiveness of the proposed descriptors in outperforming other state-of-the-art descriptors. Also, a Auto Relevance Feedback (ARF) technique is introduced which is based on the proposed descriptors. This technique readjusts the initial retrieval results based on user preferences improving the retrieval score significantly. An online demo of the image retrieval system img(Anaktisi) that implements the proposed descriptors can be found at .

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3