APPROXIMATE SOLUTION OF MODIFIED CAMASSA–HOLM AND DEGASPERIS–PROCESI EQUATIONS USING WAVELET OPTIMIZED FINITE DIFFERENCE METHOD

Author:

BEHERA RATIKANTA1,MEHRA MANI1

Affiliation:

1. Department of Mathematics, Indian Institute of Technology Delhi, New Delhi - 110016, India

Abstract

In this paper, we apply wavelet optimized finite difference method to solve modified Camassa–Holm and modified Degasperis–Procesi equations. The method is based on Daubechies wavelet with finite difference method on an arbitrary grid. The wavelet is used at regular intervals to adaptively select the grid points according to the local behaviour of the solution. The purpose of wavelet-based numerical methods for solving linear or nonlinear partial differential equations is to develop adaptive schemes, in order to achieve accuracy and computational efficiency. Since most of physical and scientific phenomena are modeled by nonlinear partial differential equations, but it is difficult to handle nonlinear partial differential equations analytically. So we need approximate solution to solve these type of partial differential equation. Numerical results are presented for approximating modified Camassa–Holm and modified Degasperis–Procesi equations, which demonstrate the advantages of this method.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Information Systems,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3