Affiliation:
1. Faculty of Materials Science and Engineering at Shenyang Aerospace University (SAU), Shenyang 110136, P. R. China
2. Faculty of Aeronautical and Astronautical Engineering at Shenyang Aerospace University (SAU), Shenyang 110136, P. R. China
Abstract
High-performance pressure sensors have caused widespread concern due to the potential applications in 3D-touch technology and wearable electronic devices. Herein, a new type of graphene pressure sensor based on the glass fiber surfacing mat coated with graphene oxide aqueous solution by a spray-vacuum filtration method and HI acid reduction method is reported. It is a simple and highly effective method to reduce graphene oxide films into highly conductive graphene films without destroying their integrity and flexibility at a low temperature based on the nucleophilic substitution reaction. The FTIR, SEM and conductivity tests indicate that the optimum time for graphene oxide to be reduced is 30[Formula: see text]min, under this condition enter the epoxy group has been reacted without damaging the regular sp2 hybrid C atom structure in graphene. The conductivity of the graphene pressure sensor is increased significantly to 23260[Formula: see text]S/m. The monotonic compressing test for 100[Formula: see text]Pa/s and the test of the metal block placement and removal demonstrate that the sensor exhibits relatively high linearity of 99.74% between the response and pressure, the advantage makes the sensor monitor pressure more accurately. More importantly, the pressure sensor based on the glass fiber surfacing mat coated with graphene shows extremely high sensitivity (0.169[Formula: see text][Formula: see text]), fast response time (251[Formula: see text]ms) and good stability for 1000 cycles. Based on its superior performance, it also demonstrates potential applications in measuring pressure and human body’s motions.
Funder
National Nature Science Fund
Aeronautical Science Foundation
Shenyang science project
Natural science foundation of Liaoning Province
Scientific Research Fund for Public Welfare of Liaoning province
Scientific Research Project of Liaoning Provincial Education Department
China Aerospace Science and Technology Group Innovation Fund
Publisher
World Scientific Pub Co Pte Lt
Subject
General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献