DIAMETER-CONSTRAINED STEINER TREES

Author:

DING WEI1,LIN GUOHUI2,XUE GUOLIANG3

Affiliation:

1. Zhejiang Water Conservancy and Hydropower College, Hangzhou, Zhejiang, 310018, P. R. China

2. Department of Computing Science, University of Alberta, Edmonton, Alberta T6G 2E8, Canada

3. Department of Computer Science and Engineering, Arizona State University, Tempe, AZ 85287-8809, USA

Abstract

Given an edge-weighted undirected graph G = (V, E, c, w), where each edge e ∈ E has a non-negative cost c(e) and a non-negative weight w(e), a set S ⊆ V of terminals and a positive constant D0, we seek a minimum cost Steiner tree in which all terminals appear as leaves and the tree diameter is bounded by D0. Here the tree diameter is the maximum weight of the paths connecting two different leaves in the tree. Such a problem is called the minimum cost diameter-constrained Steiner tree problem. The problem is NP-hard even when the topology of the Steiner tree is fixed. In present paper we focus on this fixed topology restricted version and present a fully polynomial time approximation scheme for computing a minimum cost diameter-constrained Steiner tree.

Publisher

World Scientific Pub Co Pte Lt

Subject

Discrete Mathematics and Combinatorics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Minimum Diameter Vertex-Weighted Steiner Tree;Algorithmic Aspects in Information and Management;2020

2. Minimum diameter cost-constrained Steiner trees;Journal of Combinatorial Optimization;2013-04-03

3. On the Minimum Diameter Cost-Constrained Steiner Tree Problem;Combinatorial Optimization and Applications;2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3