Affiliation:
1. Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong
Abstract
The purpose of this paper is to give a proof of the real part of the Riemann–Roch–Grothendieck theorem for complex flat vector bundles at the differential form level in the even dimensional fiber case. The proof is, roughly speaking, an application of the local family index theorem for a perturbed twisted spin Dirac operator, a variational formula of the Bismut–Cheeger eta form without the kernel bundle assumption in the even dimensional fiber case, and some properties of the Cheeger–Chern–Simons class of complex flat vector bundle.
Publisher
World Scientific Pub Co Pte Lt
Subject
Geometry and Topology,Analysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献