MACHINE LEARNING AS A POWERFUL TOOL FOR PERFORMANCE PREDICTION AND OPTIMIZATION OF CONCENTRATED PHOTOVOLTAIC-THERMOELECTRIC SYSTEM

Author:

Yusuf Aminu1ORCID,Bayhan Nevra2ORCID,Tiryaki Hasan1ORCID,Balllikaya Sedat1ORCID

Affiliation:

1. ISTANBUL UNIVERSITY-CERRAHPASA

2. İSTANBUL ÜNİVERSİTESİ - CERRAHPAŞA

Abstract

Because there is a critical necessity to ensure the optimal operation of concentrated photovoltaic-thermoelectric (CPV-TE) systems, various optimization methods such as Paretosearch (PS), Multi-objective genetic algorithm (MOGA), and the hybrid Goal Attainment – Multi-objective genetic algorithm (GOAL-MOGA) are commonly employed. These approaches aim to enhance both the output power and energy efficiency of CPV-TE systems. By combining the Pareto fronts generated by MOGA and GOAL-MOGA, 19 distinct machine learning (ML) algorithms were trained. The findings demonstrate that the Artificial Neural Network (ANN) ML algorithm outperforms others, displaying an average prediction error of 0.0692% on the test dataset. In addition to its prediction capability, the ANN-based ML model can be viewed as an optimization model since it produces optimized outputs similar to those from MOGA and GOAL-MOGA. The ANN-based ML algorithm performs better when trained on a combined dataset from both MOGA and GOAL-MOGA compared to using either MOGA or GOAL-MOGA alone. To enhance the optimization capability of the ANN-based ML algorithm further, more Pareto fronts from other optimization techniques can be added.

Funder

This study was not funded by any institution.

Publisher

Konya Muhendislik Bilimleri Dergisi

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3