Optimal Prescriptive Trees

Author:

Bertsimas Dimitris1ORCID,Dunn Jack1ORCID,Mundru Nishanth2ORCID

Affiliation:

1. Sloan School of Management and Operations Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139;

2. Sloan School of Management and Operations Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Abstract

Motivated by personalized decision making, given observational data [Formula: see text] involving features [Formula: see text], assigned treatments or prescriptions [Formula: see text], and outcomes [Formula: see text], we propose a tree-based algorithm called optimal prescriptive tree (OPT) that uses either constant or linear models in the leaves of the tree to predict the counterfactuals and assign optimal treatments to new samples. We propose an objective function that balances optimality and accuracy. OPTs are interpretable and highly scalable, accommodate multiple treatments, and provide high-quality prescriptions. We report results involving synthetic and real data that show that OPTs either outperform or are comparable with several state-of-the-art methods. Given their combination of interpretability, scalability, generalizability, and performance, OPTs are an attractive alternative for personalized decision making in a variety of areas, such as online advertising and personalized medicine.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

General Medicine

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A survey of contextual optimization methods for decision-making under uncertainty;European Journal of Operational Research;2025-01

2. PresAIse, a prescriptive AI solution for enterprise;INFOR: Information Systems and Operational Research;2024-08-05

3. Optimal classification trees with leaf-branch and binary constraints;Computers & Operations Research;2024-06

4. Building Trees for Probabilistic Prediction via Scoring Rules;Technometrics;2024-05-14

5. Toward interpretable machine learning: evaluating models of heterogeneous predictions;Annals of Operations Research;2024-05-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3