Affiliation:
1. Department of Computational and Applied Mathematics, Rice University, Houston, Texas 77005;
2. Sloan School of Management, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Abstract
Piecewise linear functions are deceptively simple structures that are nonetheless capable of approximating complex nonlinear behavior. As such, they have been adopted throughout operations research and engineering to approximate nonlinear structures in optimization problems which would otherwise render the problem extremely difficult to solve. In “Nonconvex Piecewise Linear Functions: Advanced Formulations and Simple Modeling Tools,” J. Huchette and J. P. Vielma derive new mixed-integer programming (MIP) formulations for embedding low-dimensional nonconvex piecewise linear functions in optimization models. These formulations computationally outperform the crowded field of existing approaches in a number of regimes of interest. As these formulations are derived using recently developed machinery that produce highly performant, but uninterpretable, formulations, the authors showcase the utility of high-level modeling tools by presenting PiecewiseLinearOpt.jl, an extension to the popular JuMP optimization modeling language that implements a host of MIP formulations for piecewise linear function in a single, easy-to-use interface.
Publisher
Institute for Operations Research and the Management Sciences (INFORMS)
Subject
Management Science and Operations Research,Computer Science Applications
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献