Information Disclosure and Promotion Policy Design for Platforms

Author:

Gur Yonatan1ORCID,Macnamara Gregory2ORCID,Morgenstern Ilan1ORCID,Saban Daniela1ORCID

Affiliation:

1. Operations, Information and Technology, Stanford Graduate School of Business, Stanford, California 94305;

2. Core Data Science, Meta Platforms, Inc., Menlo Park, California 94025

Abstract

We consider a platform facilitating trade between sellers and buyers with the objective of maximizing consumer surplus. Even though in many such marketplaces, prices are set by revenue-maximizing sellers, platforms can influence prices through (i) price-dependent promotion policies that can increase demand for a product by featuring it in a prominent position on the web page and (ii) the information revealed to sellers about the value of being promoted. Identifying effective joint information design and promotion policies is a challenging dynamic problem as sellers can sequentially learn the promotion value from sales observations and update prices accordingly. We introduce the notion of confounding promotion policies, which are designed to prevent a Bayesian seller from learning the promotion value (at the expense of the short-run loss of diverting some consumers from the best product offering). Leveraging these policies, we characterize the maximum long-run average consumer surplus that is achievable through joint information design and promotion policies when the seller sets prices myopically. We then construct a Bayesian Nash equilibrium, in which the seller’s best response to the platform’s optimal policy is to price myopically in every period. Moreover, the equilibrium we identify is platform optimal within the class of horizon-maximin equilibria, in which strategies are not predicated on precise knowledge of the horizon length and are designed to maximize payoff over the worst-case horizon. Our analysis allows one to identify practical long-run average optimal platform policies in a broad range of demand models. This paper was accepted by David Simchi-Levi, revenue management and market analytics. Supplemental Material: The online appendix is available at https://doi.org/10.1287/mnsc.2023.4677 .

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Strategy and Management

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Data, Competition, and Digital Platforms;American Economic Review;2024-08-01

2. Learning to Persuade on the Fly: Robustness Against Ignorance;Operations Research;2024-06-18

3. Platform vs. 3PL financing: Strategic choice of lending model for an e-tailer under operational risk;Transportation Research Part E: Logistics and Transportation Review;2024-04

4. Dynamic competition and market structure for platform‐based products: roles of product quality and indirect network effect;International Transactions in Operational Research;2024-03-11

5. Seller promotion and competition on decentralized two-sided platforms;Journal of Modelling in Management;2024-02-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3