Traceability Technology Adoption in Supply Chain Networks

Author:

Blaettchen Philippe1ORCID,Calmon Andre P.2ORCID,Hall Georgina3ORCID

Affiliation:

1. Bayes Business School (formerly Cass), City, University of London, London EC1Y 8TZ, United Kingdom;

2. Scheller College of Business, Georgia Institute of Technology, Atlanta, Georgia 30308;

3. Decision Sciences, INSEAD, 77305 Fontainebleau, France

Abstract

Modern traceability technologies promise to improve supply chain management by simplifying recalls, increasing visibility, and verifying sustainable supplier practices. Initiatives leading the implementation of traceability technologies must choose the least-costly set of firms—or seed set—to target for early adoption. Choosing this seed set is challenging because firms are part of supply chains interlinked in complex networks, yielding an inherent supply chain effect: benefits obtained from traceability are conditional on technology adoption by a subset of firms in a product’s supply chain. We prove that the problem of selecting the least-costly seed set in a supply chain network is hard to solve and even approximate within a polylogarithmic factor. Nevertheless, we provide a novel linear programming-based algorithm to identify the least-costly seed set. The algorithm is fixed-parameter tractable in the supply chain network’s treewidth, which we show to be low in real-world supply chain networks. The algorithm also enables us to derive easily computable bounds on the cost of selecting an optimal seed set. We leverage our toolbox to conduct large-scale numerical experiments that provide insights into how the supply chain network structure influences diffusion. These insights can help managers optimize their technology diffusion strategy. This paper was accepted by Chung Piaw Teo, optimization. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2022.01759 .

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3