Plausible Screening Using Functional Properties for Simulations with Large Solution Spaces

Author:

Eckman David J.1ORCID,Plumlee Matthew2ORCID,Nelson Barry L.2ORCID

Affiliation:

1. Wm Michael Barnes ’64 Department of Industrial & Systems Engineering, Texas A&M University, College Station, Texas 77843

2. Department of Industrial Engineering & Management Sciences, Northwestern University, Evanston, Illinois 60208

Abstract

Simulation Solution Screening Using Functional Properties Simulation models today give rise to problems with large numbers of simulated scenarios or solutions—more than can be simulated exhaustively. Fortunately, users of these models may be able to verify or infer properties, such as convexity, of a performance measure of interest when viewed as a function over the space of solutions. In “Plausible Screening Using Functional Properties for Simulations with Large Solution Spaces,” Eckman, Plumlee and Nelson introduce a framework in which such properties are exploited to avoid simulating solutions with unacceptable performances. Their methods solve optimization problems that measure how well the result of a limited simulation experiment agrees with the claim that a solution is acceptable. These methods deliver desirable statistical guarantees of confidence and consistency. Numerical experiments illustrate how functional properties coupled with small simulation experiments can avoid many simulations for simulation-optimization problems.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Computer Science Applications

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Screening Simulated Systems for Optimization;2023 Winter Simulation Conference (WSC);2023-12-10

2. Stochastic Localization Methods for Convex Discrete Optimization via Simulation;Operations Research;2023-10-06

3. Simulation: the Critical Technology in Digital Twin Development;2022 Winter Simulation Conference (WSC);2022-12-11

4. Gradient-Based Algorithms for Convex Discrete Optimization via Simulation;Operations Research;2022-04-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3