Scalable Parallel Nonlinear Optimization with PyNumero and Parapint

Author:

Rodriguez Jose S.1,Parker Robert B.23ORCID,Laird Carl D.3ORCID,Nicholson Bethany L.2ORCID,Siirola John D.2,Bynum Michael L.2ORCID

Affiliation:

1. Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907;

2. Center for Computing Research, Sandia National Laboratories, Albuquerque, New Mexico 87123;

3. Carnegie Mellon University, Department of Chemical Engineering, Pittsburgh, Pennsylvania 15213

Abstract

We describe PyNumero, an open-source, object-oriented programming framework in Python that supports rapid development of performant parallel algorithms for structured nonlinear programming problems (NLP’s) using the Message Passing Interface (MPI). PyNumero provides three fundamental building blocks for developing NLP algorithms: a fast interface for calculating first and second derivatives with the AMPL Solver Library (ASL), a number of interfaces to efficient linear solvers, and block-structured vectors and matrices based on NumPy, SciPy, and MPI that support distributed parallel storage and computation. PyNumero’s design enables efficient, parallel algorithm development using high-level Python syntax while keeping expensive numerical calculations in fast, compiled implementations based on languages like C and Fortran. To demonstrate the utility of PyNumero, we also present Parapint, a Python package built on PyNumero for parallel solution of dynamic optimization problems. Parapint includes a parallel interior-point solver based on Schur-Complement decomposition. We illustrate the effectiveness of PyNumero for developing parallel algorithms with both code examples and scalability analyses for parallel matrix-vector dot products, parallel solution of structured systems of linear equations using Schur-Complement decomposition, and the parallel solution of a two-dimensional PDE optimal control problem. Our numerical results show nearly perfect scaling to more than 1,000 cores for large matrix-vector dot products and structured linear systems. Moreover, we obtain more than 354 times speedup for the optimal control example. History: Accepted by Alice Smith, EIC/Ted Ralphs, Area Editor/Software Tools. Funding: This work was funded in part by the Institute for the Design of Advanced Energy Systems (IDAES) with funding from the Office of Fossil Energy, Cross-Cutting Research, U.S. Department of Energy. This work was also funded by Sandia National Laboratories Laboratory Directed Research and Development (LDRD) program. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2023.1272 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2021.0285 ) at ( http://dx.doi.org/10.5281/zenodo.7192328 ).

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

General Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3