Solving a Class of Cut-Generating Linear Programs via Machine Learning

Author:

Rajabalizadeh Atefeh1,Davarnia Danial1ORCID

Affiliation:

1. Department of Industrial and Manufacturing Systems Engineering, Iowa State University, Ames, Iowa 50011

Abstract

Cut-generating linear programs (CGLPs) play a key role as a separation oracle to produce valid inequalities for the feasible region of mixed-integer programs. When incorporated inside branch-and-bound, the cutting planes obtained from CGLPs help to tighten relaxations and improve dual bounds. However, running the CGLPs at the nodes of the branch-and-bound tree is computationally cumbersome due to the large number of node candidates and the lack of a priori knowledge on which nodes admit useful cutting planes. As a result, CGLPs are often avoided at default settings of branch-and-cut algorithms despite their potential impact on improving dual bounds. In this paper, we propose a novel framework based on machine learning to approximate the optimal value of a CGLP class that determines whether a cutting plane can be generated at a node of the branch-and-bound tree. Translating the CGLP as an indicator function of the objective function vector, we show that it can be approximated through conventional data classification techniques. We provide a systematic procedure to efficiently generate training data sets for the corresponding classification problem based on the CGLP structure. We conduct computational experiments on benchmark instances using classification methods such as logistic regression. These results suggest that the approximate CGLP obtained from classification can improve the solution time compared with that of conventional cutting plane methods. Our proposed framework can be efficiently applied to a large number of nodes in the branch-and-bound tree to identify the best candidates for adding a cut. History: Accepted by Andrea Lodi, Area Editor for Design & Analysis of Algorithms—Discrete. Supplemental Material: The e-companion is available at https://doi.org/10.1287/ijoc.2022.0241 .

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3