Semidefinite Programming and Nash Equilibria in Bimatrix Games

Author:

Ahmadi Amir Ali1ORCID,Zhang Jeffrey1

Affiliation:

1. Department of Operations Research and Financial Engineering, Princeton University, Princeton, New Jersey 08544

Abstract

We explore the power of semidefinite programming (SDP) for finding additive ɛ-approximate Nash equilibria in bimatrix games. We introduce an SDP relaxation for a quadratic programming formulation of the Nash equilibrium problem and provide a number of valid inequalities to improve the quality of the relaxation. If a rank-1 solution to this SDP is found, then an exact Nash equilibrium can be recovered. We show that, for a strictly competitive game, our SDP is guaranteed to return a rank-1 solution. We propose two algorithms based on the iterative linearization of smooth nonconvex objective functions whose global minima by design coincide with rank-1 solutions. Empirically, we demonstrate that these algorithms often recover solutions of rank at most 2 and ɛ close to zero. Furthermore, we prove that if a rank-2 solution to our SDP is found, then a [Formula: see text]-Nash equilibrium can be recovered for any game, or a [Formula: see text]-Nash equilibrium for a symmetric game. We then show how our SDP approach can address two (NP-hard) problems of economic interest: finding the maximum welfare achievable under any Nash equilibrium, and testing whether there exists a Nash equilibrium where a particular set of strategies is not played. Finally, we show the connection between our SDP and the first level of the Lasserre/sum of squares hierarchy.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

General Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Semidefinite games;International Journal of Game Theory;2024-06-20

2. Identifying Socially Optimal Equilibria Using Combinatorial Properties of Nash Equilibria in Bimatrix Games;INFORMS Journal on Computing;2024-02-21

3. A Differentiable Path-Following Method with a Compact Formulation to Compute Proper Equilibria;INFORMS Journal on Computing;2023-10-11

4. Nash Equilibrium Problems of Polynomials;Mathematics of Operations Research;2023-07-14

5. Assessing the Quality of a Set of Basis Functions for Inverse Optimal Control via Projection onto Global Minimizers;2022 IEEE 61st Conference on Decision and Control (CDC);2022-12-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3