Satiation in Fisher Markets and Approximation of Nash Social Welfare

Author:

Garg Jugal1ORCID,Hoefer Martin2ORCID,Mehlhorn Kurt3ORCID

Affiliation:

1. Department of Industrial & Enterprise Systems Engineering, University of Illinois Urbana-Champaign, Champaign, Illinois 61801;

2. Institut für Informatik, Goethe Universität Frankfurt/Main, 60325 Frankfurt, Germany;

3. Algorithms and Complexity Group, Max Planck Institut für Informatik, 66123 Saarbrucken, Germany

Abstract

We study linear Fisher markets with satiation. In these markets, sellers have earning limits, and buyers have utility limits. Beyond applications in economics, they arise in the context of maximizing Nash social welfare when allocating indivisible items to agents. In contrast to markets with either earning or utility limits, markets with both limits have not been studied before. They turn out to have fundamentally different properties. In general, the existence of competitive equilibria is not guaranteed. We identify a natural property of markets (termed money clearing) that implies existence. We show that the set of equilibria is not always convex, answering a question posed in the literature. We design an FPTAS to compute an approximate equilibrium and prove that the problem of computing an exact equilibrium lies in the complexity class continuous local search ([Formula: see text]; i.e., the intersection of polynomial local search ([Formula: see text]) and polynomial parity arguments on directed graphs ([Formula: see text])). For a constant number of buyers or goods, we give a polynomial-time algorithm to compute an exact equilibrium. We show how (approximate) equilibria can be rounded and provide the first constant-factor approximation algorithm (with a factor of 2.404) for maximizing Nash social welfare when agents have capped linear (also known as budget-additive) valuations. Finally, we significantly improve the approximation hardness for additive valuations to [Formula: see text]. Funding: J. Garg was supported by the National Science Foundation [Grant CCF-1942321 (CAREER)]. M. Hoefer was supported by Deutsche Forschungsgemeinschaft [Grants Ho 3831/5-1, Ho 3831/6-1, and Ho 3831/7-1].

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Computer Science Applications,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3