Performance Analysis of Multi-Tote Storage and Retrieval Autonomous Mobile Robot Systems

Author:

Qin Zhizhen12ORCID,Yang Peng12ORCID,Gong Yeming3ORCID,de Koster René B. M.4ORCID

Affiliation:

1. Division of Logistics and Transportation, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China;

2. Institution of Data and Information, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China;

3. Artificial Intelligence in Management Institute, Emlyon Business School, 69130 Écully, France;

4. Rotterdam School of Management, Erasmus University Rotterdam, 3062 PA Rotterdam, Netherlands

Abstract

Multi-tote storage and retrieval (MTSR) autonomous mobile robots can carry multiple product totes, store and retrieve them from different shelf rack tiers, and transport them to a workstation where the products are picked to fulfill customer orders. In each robot trip, totes retrieved during the previous trip must be stored. This leads to a mixed storage and retrieval route. We analyze this mixed storage and retrieval route problem and derive the optimal travel route for a multiblock warehouse by a layered graph algorithm, based on storage first-retrieval second and mixed storage and retrieval policies. We also propose an effective heuristic routing policy, the closest retrieval (CR) sequence policy, based on a local shortest path. Numerical results show that the CR policy leads to shorter travel times than the well-known S-shape policy, whereas the gap with the optimal mixed storage and retrieval policy in practical scenarios is small. Based on the CR policy, we model the stochastic behavior of the system using a semiopen queuing network (SOQN). This model can accurately estimate average tote throughput time and system throughput capacity as a function of the number of robots in the system. We use the SOQN and corresponding closed queuing network models to optimize the total annual cost as a function of the warehouse shape, the number of robots, and tote buffer positions on the robots for a given average tote throughput time and throughput capacity. Compared with robots that retrieve a single tote per trip, an MTSR system with at least five buffer positions can achieve lower operational costs while meeting given average tote throughput time and tote throughput capacity constraints. Funding: This work was supported by National Natural Science Foundation of China [Grant 72372088] and the Shenzhen Science and Technology Program [Grant GJHZ20220913143003006]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2023.0397 .

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3