On a Network Centrality Maximization Game

Author:

Catalano Costanza1ORCID,Castaldo Maria2ORCID,Como Giacomo34ORCID,Fagnani Fabio3ORCID

Affiliation:

1. Department of Economics, Statistics and Research, Bank of Italy, 00044 Frascati, Italy;

2. GIPSA-lab, Université de Grenoble Alpes, Centre national de la recherche scientifique, INRIA, Grenoble INP, F-38000 Grenoble, France;

3. G. L. Lagrange Department of Mathematical Sciences, Polytechnic University of Turin, 10129 Turin, Italy;

4. Department of Automatic Control, Lund University, 22100 Lund, Sweden

Abstract

We study a network formation game where n players, identified with the nodes of a directed graph to be formed, choose where to wire their outgoing links in order to maximize their PageRank centrality. Specifically, the action of every player i consists in the wiring of a predetermined number di of directed out-links, and her utility is her own PageRank centrality in the network resulting from the actions of all players. We show that this is a potential game and that the best response correspondence always exhibits a local structure in that it is never convenient for a node i to link to other nodes that are at incoming distance more than di from her. We then study the equilibria of this game determining necessary conditions for a graph to be a (strict, recurrent) Nash equilibrium. Moreover, in the homogeneous case, where players all have the same number d of out-links, we characterize the structure of the potential-maximizing equilibria, and in the special cases d = 1 and d = 2, we provide a complete classification of the set of (strict, recurrent) Nash equilibria. Our analysis shows in particular that the considered formation mechanism leads to the emergence of undirected and disconnected or loosely connected networks. Funding: This research was carried out within the framework of the Ministero dell’Università e della Ricerca (MIUR)-funded Progetto di Eccellenza of the Dipartimento di Scienze Matematiche G. L. Lagrange, Politecnico di Torino [CUP: E11G18000350001]. It received partial support from the MIUR-funded project PRIN 2017 “Advanced Network Control of Future Smart Grids” and from the Compagnia di San Paolo.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3