Hydra, a model system for deciphering the mechanisms of aging and resistance to aging

Author:

Schenkelaars Quentin,Tomczyk Szymon,Wenger Yvan,Ekundayo Kazadi,Girard Victor,Buzgariu Wanda,Austad Steve,Galliot Brigitte

Abstract

ABSTRACTThe freshwater cnidarian polyp named Hydra, which can be mass-cultured in the laboratory, is characterized by a highly dynamic homeostasis with a continuous self-renewal of its three adult stem cell populations, the epithelial stem cells from the epidermis, the epithelial stem cells from the gastrodermis, and the multipotent interstitial stem cells, which provide cells of the nervous system, gland cells and germ cells. Two unusual features characterize these stem cells that cannot replace each other, they all avoid G1 to pause in G2, and the two epithelial populations are concomitantly multifunctional and stem cells. H. vulgaris that does not show any signs of aging over the years, resists to weeks of starvation and adapts to the loss of neurogenesis, providing a unique model system to study the resistance to aging. By contrast some strains of a distinct species named H. oligactis undergo a rapid aging process when undergoing gametogenesis or when placed in stress conditions. The aging phenotype is characterized by the rapid loss of somatic interstitial stem cells, the progressive reduction in epithelial stem cell self-renewal, the loss of regeneration, the disorganization of the neuro-muscular system, the loss of the feeding behavior, and the death of all animals within about three months. We review here the possible mechanisms that help H. vulgaris to sustain stem cell self-renewal and thus bypass aging processes. For this, FoxO seems to act as a pleiotropic actor, regulating stem cell proliferation, stress response and apoptosis. In H. oligactis, the regulation of the autophagy flux differs between aging-sensitive and aging-resistant animals, pointing to a key role for proteostasis in the maintenance of a large pool of active and plastic epithelial stem cells.

Publisher

Cold Spring Harbor Laboratory

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3