Asymmetric adhesion of rod-shaped bacteria controls microcolony morphogenesis

Author:

Marie-Cécilia Duvernoy,Thierry Mora,Maxime Ardré,Vincent Croquette,David Bensimon,Catherine Quilliet,Jean-Marc Ghigo,Martial Balland,Christophe Beloin,Sigolène Lecuyer,Nicolas Desprat

Abstract

Bacterial biofilms are spatially structured communities, within which bacteria can differentiate depending on environmental conditions. During biofilm formation, bacteria attach to a surface and use cell-cell contacts to convey the signals required for the coordination of biofilm morphogenesis. How bacteria can maintain both substrate adhesions and cell-cell contacts during the expansion of a microcolony is still a critical yet poorly understood phenomenon. Here, we describe the development of time-resolved methods to measure substrate adhesion at the single cell level during the formation of E. coli and P. aeruginosa microcolonies. We show that bacterial adhesion is asymmetrically distributed along the cell body. Higher adhesion forces at old poles put the daughter cells under tension and force them to slide along each other. These rearrangements increase cell-cell contacts and the circularity of the colony. We propose a mechanical model based on the microscopic details of adhesive links, which recapitulates microcolony morphogenesis and quantitatively predicts bacterial adhesion from simple time lapse movies. These results explain how the distribution of adhesion forces at the subcellular level directs the shape of bacterial colonies, which ultimately dictates the circulation of secreted signals.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamical analysis of bacteria in microscopy movies;PLOS ONE;2019-06-06

2. Force generation by groups of migrating bacteria;Proceedings of the National Academy of Sciences;2017-06-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3