Reciprocal regulation of m6A modification and miRNA production machineries via phase separation-dependent and -independent mechanisms

Author:

Zhong Songxiao,Li Xindi,Li Changhao,Bai Haiyan,Chen Jingjing,Gan Lu,Zhu Jiyun,Oh Taerin,Yan Xingxing,Zhu Jiaying,Li Niankui,Koiwa Hisashi,Meek Thomas,Peng Xu,Yu Bin,Zhang Zhonghui,Zhang Xiuren

Abstract

AbstractMethyltransferase complex (MTC) depositsN6-adenosine (m6A) onto RNA, whereas microprocessor produces miRNA. Whether and how these two distinct complexes cross-regulate each other has been poorly studied. Here we report that the MTC subunit B (MTB) tends to form insoluble condensates with poor activity, with its level monitored by 20S proteasome. Conversely, the microprocessor component SERRATE (SE) forms liquid-like condensates, which in turn promotes solubility and stability of MTB, leading to increased MTC activity. Consistently, the hypomorphic lines expressing SE variants, defective in MTC interaction or liquid-like phase behavior, exhibit reduced m6A level. Reciprocally, MTC can recruit microprocessor toMIRNAloci, prompting co-transcriptional cleavage of primary miRNA (pri-miRNAs) substrates. Additionally, pri-miRNAs carrying m6A modifications at their single-stranded basal regions are enriched by m6A readers, which retain microprocessor in the nucleoplasm for continuing processing. This reveals an unappreciated mechanism of phase separation in RNA modification and processing through MTC and microprocessor coordination.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3