Leveraging protein-protein interactions in phenotype prediction through graph neural networks

Author:

Smeriglio RiccardoORCID,Rosell-Mirmi JoanaORCID,Radeva PetiaORCID,Abante JordiORCID

Abstract

AbstractCurrent genotype-to-phenotype models, such as poly-genic risk scores, only account for linear relationships between genotype and phenotype and ignore epistatic interactions, limiting the complexity of the diseases that can be properly characterized. Protein-protein interaction networks have the potential to improve the performance of the models. Moreover, interactions at the protein level can have profound implications in understanding the genetic etiology of diseases and, in turn, for drug development. In this article, we propose a novel approach for phenotype prediction based on graph neural networks (GNNs) that naturally incorporates existing protein interaction networks into the model. As a result, our approach can naturally discover relevant epistatic interactions. We assess the potential of this approach using simulations and comparing it to linear and other non-linear approaches. We also study the performance of the proposed GNN-based methods in predicting Alzheimer’s disease, one of the most complex neurodegenerative diseases, where our GNN approach outperform state of the art methods. In addition, we show that our proposal is able to discover critical interactions in the Alzheimer’s disease. Our findings highlight the potential of GNNs in predicting phenotypes and discovering the underlying mechanisms of complex diseases.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3