Integrating a host transcriptomic biomarker with a large language model for diagnosis of lower respiratory tract infection

Author:

Van Phan Hoang,Spottiswoode Natasha,Lydon Emily C.,Chu Victoria T.,Cuesta Adolfo,Kazberouk Alexander D.,Richmond Natalie L.,Calfee Carolyn S.,Langelier Charles R.

Abstract

AbstractLower respiratory tract infections (LRTIs) are a leading cause of mortality worldwide. Despite this, diagnosing LRTI remains challenging, particularly in the intensive care unit, where non-infectious respiratory conditions can present with similar features. Here, we tested a new method for LRTI diagnosis that combines the transcriptomic biomarkerFABP4with assessment of text from the electronic medical record (EMR) using the large language model Generative Pre-trained Transformer 4 (GPT-4). We evaluated this methodology in a prospective cohort of critically ill adults with acute respiratory failure, in which we measured pulmonaryFABP4expression and identified patients with LRTI or non-infectious conditions using retrospective adjudication. A diagnostic classifier combiningFABP4and GPT-4 achieved an area under the receiver operator curve (AUC) of 0.92 ± 0.06 by five-fold cross validation (CV), outperforming classifiers based onFABP4expression alone (AUC 0.83) or GPT-4 alone (AUC 0.84). At the Youden’s index within each CV fold, the combined classifier achieved a mean sensitivity of 92% ± 7%, specificity of 90% ± 17% and accuracy of 91% +/- 8%. Taken together, our findings suggest that combining a host transcriptional biomarker with interpretation of EMR data using artificial intelligence is a promising new approach to infectious disease diagnosis.

Publisher

Cold Spring Harbor Laboratory

Reference23 articles.

1. World Health Organization. Vol. 2024 (2020).

2. Community-Acquired Pneumonia Requiring Hospitalization among U.S. Adults

3. Antibiotic resistance associated with the COVID-19 pandemic: a systematic review and meta-analysis

4. Centers for Disease Control and Prevention. (ed. Centers for Disease Control and Prevention) (https://stacks.cdc.gov/view/cdc/119025, 2022).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3