Beyond neutral loci: Examining immune gene variation in tigers(Panthera tigris)

Author:

Aditi B.V.,Ramakrishnan UmaORCID

Abstract

AbstractIsolated and inbred populations are at a higher risk to extinction due to the loss of genetic diversity. Carnivores are particularly susceptible to isolation due to their ecological requirements. Studies generally assess genetic vulnerability using neutral loci, but these may not accurately reflect a population’s adaptive potential. In contrast, diversity at loci putatively involved in fitness and hence survival, such as immune genes, could be a better proxy for future survival. Research on immune genes has traditionally focused on the MHC loci. We extend this investigation to five families of non-MHC immune genes - Tumor Necrosis Factor, Interleukin, Toll-like Receptor, Leukocyte Immunoglobulin Receptors, and Chemokine - involved in adaptive and innate immunity in tigers which exemplifies an endangered carnivore. We compare immune gene diversity to neutral diversity across the genome using whole genome resequencing data from 107 tigers, representing all extant subspecies and populations of different demographic histories.Our analysis reveals that immune receptor genes (mean nucleotide diversity: 0.0019) show high nucleotide diversity compared to neutral loci (0.0008) and immune signalling genes (0.0004) indicating past positive selection. Heterozygosity at the three classes of loci suggest that most immune genes are evolving neutrally. We confirm that small, isolated populations have lower nucleotide diversity and heterozygosity at both neutral and immune loci compared to large and connected populations. Additionally, genetic differentiation and deleterious mutation load correspond to known signatures from inbreeding and recent bottlenecks. Despite low neutral and immunogenetic diversity in small populations, some loci retain polymorphisms, irrespective of adaptive or innate immune functions. We conclude that drift is the predominant evolutionary force in bottlenecked populations even at adaptive loci.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3