Genetic underpinnings of predicted changes in cardiovascular function using self supervised learning

Author:

Levine ZacharyORCID,Lutsker Guy,Godneva Anastasia,Weinberger Adina,Pompan Maya,Talmor-Barkan Yeela,Reisner YotamORCID,Rossman Hagai,Segal EranORCID

Abstract

AbstractBackgroundThe genetic underpinnings of cardiovascular disease remain elusive. Contrastive learning algorithms have recently shown cutting-edge performance in extracting representations from electrocardiogram (ECG) signals that characterize cross-temporal cardiovascular state. However, there is currently no connection between these representations and genetics.MethodsWe designed a new metric, denoted as Delta ECG, which measures temporal shifts in patients’ cardiovascular state, and inherently adjusts for inter-patient differences at baseline. We extracted this measure for 4,782 patients in the Human Phenotype Project using a novel self-supervised learning model, and quantified the associated genetic signals with Genome-Wide-Association Studies (GWAS). We predicted the expression of thousands of genes extracted from Peripheral Blood Mononuclear Cells (PBMCs). Downstream, we ran enrichment and overrepresentation analysis of genes we identified as significantly predicted from ECG.FindingsIn a Genome-Wide Association Study (GWAS) of Delta ECG, we identified five associations that achieved genome-wide significance. From baseline embeddings, our models significantly predict the expression of 57 genes in men and 9 in women. Enrichment analysis showed that these genes were predominantly associated with the electron transport chain and the same immune pathways as identified in our GWAS.ConclusionsWe validate a novel method integrating self-supervised learning in the medical domain and simple linear models in genetics. Our results indicate that the processes underlying temporal changes in cardiovascular health share a genetic basis with CVD, its major risk factors, and its known correlates. Moreover, our functional analysis confirms the importance of leukocytes, specifically eosinophils and mast cells with respect to cardiac structure and function.

Publisher

Cold Spring Harbor Laboratory

Reference34 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3