Structural and mechanistic diversity in p53-mediated regulation of organismal longevity across taxonomical orders

Author:

Osbourne RomaniORCID,Thayer Kelly M.

Abstract

AbstractThe accumulation of senescent cells induces several aging phenotypes, and the p53 tumor suppressor protein regulates one of the two known cellular senescence pathways. p53’s regulation of senescence is however not clear. For example, p53 deficiency in some mice has been shown to rescue premature aging while others display significant aging phenotype when p53-deficient. This study seeks to elucidate, structurally and mechanistically, p53’s roles in longevity. Through a relative evolutionary scoring (RES) algorithm, we quantify the level of evolutionary change in the residues of p53 across organisms of varying average lifespans in six taxonomic orders. Secondly, we used PEPPI to assess the likelihood of interaction between p53–or p53-linked proteins–and known senescence-regulating proteins across organisms in the orders Primates and Perciformes. Our RES algorithm found variations in the alignments within and across orders, suggesting that mechanisms of p53-mediated regulation of longevity may vary. PEPPI results suggest that longer-lived species may have evolved to regulate induction and inhibition of cellular senescence better than their shorter-lived counterparts. With experimental verification, these predictions could help elucidate the mechanisms of p53-mediated cellular senescence, ultimately clarifying our understanding of p53’s connection to aging in a multiple-species context.Author summaryThe p53 tumor suppressor protein protects our genome from cancers by repairing DNA damage, regulating cell death and/or pushing cells to a state where they become permanently unable to divide (known as cellular senescence). An accumulation of senescent cells produces various molecular features of aging in both mouse and human cellular models–thus linking p53 to the aging process. However, the molecular mechanism by which p53 regulates aging and its structural implications on this regulation are not clear. In this study, we assessed quantitatively the evolutionary differences in p53 sequences of organisms across several taxonomical orders to determine if there is a relationship between average lifespan and sequence evolution. In addition, we used a protein-protein interaction tool to assess the likelihood of interaction between p53, or p53-associated protein, and various senescence-associated proteins across organisms of various lifespans in two taxonomic orders: Primates and Perciformes. An elucidation of p53 structural difference and mechanistic proteomic network linked to p53 regulation of cellular senescence could advance therapeutics targeting abnormal aging.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3