Bisphenol A Disrupts Mitochondrial Functionality Leading to Senescence and Apoptosis in Human Amniotic Mesenchymal Stromal Cells

Author:

Ficai Sara,Papait AndreaORCID,Magatti Marta,Masserdotti Alice,Gasik Michael,Silini Antonietta Rosa,Parolini Ornella

Abstract

AbstractIn today’s context, microplastics pollution has become an increasingly pressing issue not only for the environmental fallout but also for the assumed negative effects on human health. It is now well-established that microplastics (>1 mm in size) can enter the human body through ingestion, inhalation, dermal contact and also maternal-fetal transmission. Alarming was the recent findings of microplastics within the human term placenta. Among the degradation by-products of microplastics, Bisphenol A (BPA) has emerged as a hazardous chemical, with potential toxicity at multisystemic level, particularly on the earliest stages of human development. Based on these findings, our study focuses on assessing the impact of BPA on properties and functions of mesenchymal stromal cells isolated from the amniotic membrane (hAMSC) of the human term placenta. The amniotic membrane surrounds the fetus, playing a fundamental protective role toward toxic chemicals and pollutants that the mother may encounter. Our research revealed how exposure to increasing concentrations of BPA compromise mitochondrial functionality in hAMSC, resulting in enhanced production of reactive oxygen species at mitochondrial level (mtROS). This, in turn, leads to the stabilization of p53, which triggers an increased expression of p21 and p27 encoding genes and an imbalance in the genetic expression of Bax and Bcl-2. Additionally, we observed upregulated expression of cytokines and chemokines associated with the senescence-associated secretory phenotype (SASP). The increased oxidative stress, which plays a central role in BPA-mediated toxicity, can trigger the activation of the senescence pathways, or culminate in cell death, due to the overwhelming stress conditions. Therefore, our results provide novel insights into the mechanism of action of BPA and elucidates its impact on the functionality of hAMSC. This underscores the pressing need to reconsider the use of BPA as a plastic additive, mitigating the potential adverse effects on babies.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3