Behavior- and circuit-specific cortico-striatal decoupling during the early development of Parkinson’s disease-like syndrome

Author:

Yao Xu-Ran,Liu Yang,Zheng Wei-Tong,He Kai-WenORCID

Abstract

ABSTRACTDespite that cortico-striatal decoupling has been widely reported in individuals diagnosed with Parkinson’s Disease (PD), its onset, circuit specificity and underlying mechanism remain largely unclear. To investigate these questions, dual fiber photometry is established for the first time to evaluate cortico-striatal coupling during varied motor behaviors, whose cell-type resolution was provided by the usage of Cre transgenic mouse lines. Contralateral turning, digging and licking show distinct coupling patterns, among which digging induces the strongest coupling. Striatal D1R-expressed medium spiny neurons (dMSNs) and D2R-expressed MSNs (iMSNs) similarly contribute to the cortical-striatal coupling during turning and licking but not digging, with much tighter coupling between the dMSNs and the M1 cortex. In PD-like mouse model induced via intra-striatal injection of synthetic mouse wildtype α-synuclein preformed fibril (PFF), digging-associated cortical-striatal decoupling emerges as early as 1-month post induction (Mpi), which becomes significant since 2 Mpi and correlates with later-onset behavioral deficit. Notably, impaired dMSNs but not iMSNs mediate this decoupling, which can be rescued by activation of D1 but not D2 receptor. Mechanistically, we found an inverted U-shape decline in striatal dopamine level along the disease development in PFF-injected mice. Supplement with L-DOPA alleviates the decoupling and motor deficit, suggesting that early dopamine deficiency directly contributes to the cortical-striatal decoupling and the associated motor deficit. These findings provide new insights into the temporal profile and mechanisms underlying the PD-associated cortico-striatal decoupling, which has been implicated as functional biomarker for early diagnosis of PD.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3