DNA methylation status classifies pleural mesothelioma cells according to their immune profile: implication for precision epigenetic therapy

Author:

Lofiego Maria FortunataORCID,Tufano Rossella,Bello Emma,Solmonese Laura,Marzani Francesco,Piazzini Francesca,Celesti Fabrizio,Caruso Francesca Pia,Rosaria Noviello Teresa Maria,Mortarini Roberta,Anichini AndreaORCID,Ceccarelli MicheleORCID,Calabrò Luana,Maio Michele,Coral Sandra,Di Giacomo Anna Maria,Covre Alessia,

Abstract

AbstractBackgroundco-targeting of immune checkpoint inhibitors (ICI) CTLA-4 and PD-1 has recently become the new first-line standard of care therapy of pleural mesothelioma (PM) patients, with a significant improvement of overall survival over conventional chemotherapy. The analysis by tumor histotype demonstrated a greater efficacy of ICI therapy in non-epithelioid (non-E)vsepithelioid (E) PM; although some E PM patients also benefit from treatment. This evidence suggests that molecular tumor features, beyond histotype, could be relevant to improve the efficacy of ICI therapy in PM. Among these, tumor DNA methylation emerges as a promising factor to explore, due to its potential role in driving the immune phenotype of cancer cells. Thus, we utilized a panel of cultured PM cells of different histotype, to provide preclinical evidence supporting the role of the tumor methylation landscape and of its pharmacologic modulation, to prospectively improve the efficacy of ICI therapy of PM patients.Methodsthe methylome profile (EPIC array) of distinct E (#5) and non-E (#9) PM cell lines was analyzed, followed by integrated analysis with their associated transcriptomic profile (Clariom S array), before and afterin vitrotreatment with the DNA hypomethylating agent (DHA) guadecitabine. The most variable methylated probes were selected to calculate the methylation score (CIMP index) for each cell line at baseline. Genes that were differentially expressed and methylated were then selected for gene ontology analysis.Resultsthe CIMP index stratified PM cell lines in two distinct classes, CIMP (hyper-methylated; #7) and LOW (hypo-methylated; #7), regardless of their E or non-E histotype. Integrated analyses of methylome and transcriptome data revealed that CIMP PM cells had a substantial number of hyper-methylated, silenced genes, which negatively impacted their immune phenotype compared to LOW PM cells.Treatment with DHA reverted the methylation-driven immune-compromised profile of CIMP PM cells and enhanced the constitutive immune-favorable profile of LOW PM cells.Conclusionthe study highlighted the relevance of DNA methylation in shaping the constitutive immune classification of PM cells, that is independent from their histological subtypes. The identified role of DHA in shifting the phenotype of PM cells towards an immune-favorable state supports its role in clinical trials of precision epigenetic therapy combined with ICI.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3