Gut Microbiota and DTI Microstructural Brain Alterations in Rodents Due to Morphine Self-Administration

Author:

Brunetti Kaylee,Zhou Zicong,Shuchi Samia,Berry Raymond,Zhang Yan,Allen Michael S.,Yang Shaohua,Figueroa JohnnyORCID,Colon-Perez LuisORCID

Abstract

AbstractThe opioid epidemic is an evolving health crisis in need of interventions that target all domains of maladaptive changes due to chronic use and abuse. Opioids are known for their effects on the opioid and dopaminergic systems, in addition to neurocircuitry changes that mediate changes in behavior; however, new research lines are looking at complementary changes in the brain and gut. The gut-brain axis (GBA) is a bidirectional signaling process that permits feedback between the brain and gut and is altered in subjects with opioid use disorders. In this work, we determine longitudinal, non-invasive, and in-vivo complementary changes in the brain and gut in rodents trained to self-administer morphine for two weeks using MRI and 16S rDNA analysis of fecal matter. We assess the changes occurring during both an acute phase (early in the self-administration process, after two days of self-administration) and a chronic phase (late in the self-administration process, after two weeks of self-administration), with all measurements benchmarked against baseline (naïve, non-drug state). Rats were surgically implanted with an intravenous jugular catheter for self-administration of morphine. Rats were allowed to choose between an active lever, which delivers a single infusion of morphine (0.4 mg/kg/infusion), or an inactive lever, which had no consequence upon pressing. Animals were scanned in a 7T MRI scanner three times (baseline, acute, and chronic), and before scanning, fecal matter was collected from each rat. After the last scan session, a subset of animals was euthanized, and brains were preserved for immunohistochemistry analysis. We found early changes in gut microbiota diversity and specific abundance as early as the acute phase that persisted into the chronic phase. In MRI, we identified alterations in diffusivity indices both within subjects and between groups, showing a main effect in the striatum, thalamus, and somatosensory cortex. Finally, immunohistochemistry analyses revealed increased neuroinflammatory markers in the thalamus of rats exposed to morphine. Overall, we demonstrate that morphine self-administration shapes the brain and gut microbiota. In conclusion, gut changes precede the anatomical effects observed in MRI features, with neuroinflammation emerging as a crucial link mediating communication between the gut and the brain. This highlights neuroinflammation as a potential target in addressing the impacts of opioid use.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3