Accurate transcription start sites enable mining for the cis-regulatory determinants of tissue specific gene expression

Author:

Ansariola MitraORCID,Fraser Valerie N.ORCID,Filichkin Sergei A.ORCID,Ivanchenko Maria G.,Bright Zachary A.ORCID,Gould Russell A.ORCID,Ozguc Olivia R.ORCID,O’Neil Shawn T.,Megraw MollyORCID

Abstract

AbstractAcross tissues, gene expression is regulated by a combination of determinants, including the binding of transcription factors (TFs), along with other aspects of cellular state. Recent studies emphasize the importance of both genetic and epigenetic states – TF binding sites and binding site chromatin accessibility have emerged as potentially causal determinants of tissue specificity. To investigate the relative contributions of these determinants, we constructed three genome-scale datasets for both root and shoot tissues of the same Arabidopsis thaliana plants: TSS-seq data to identify Transcription Start Sites, OC-seq data to identify regions of Open Chromatin, and RNA-seq data to assess gene expression levels. For genes that are differentially expressed between root and shoot, we constructed a machine learning model predicting tissue of expression from chromatin accessibility and TF binding information upstream of TSS locations. The resulting model was highly accurate (over 90% auROC and auPRC), and our analysis of model contributions (feature weights) strongly suggests that patterns of TF binding sites within ∼500 nt TSS-proximal regions are predominant explainers of tissue of expression in most cases. Thus, in plants, cis-regulatory control of tissue-specific gene expression appears to be primarily determined by TSS-proximal sequences, and rarely by distal enhancer-like accessible chromatin regions. This study highlights the exciting future possibility of a native TF site-based design process for the tissue-specific targeting of plant gene promoters.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Learning the Regulatory Code of Gene Expression;Frontiers in Molecular Biosciences;2021-06-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3