Transcriptomics provides a robust framework for the relationships of the major clades of cladobranch sea slugs (Mollusca, Gastropoda, Heterobranchia), but fails to resolve the position of the enigmatic genusEmbletonia

Author:

Karmeinski Dario,Meusemann Karen,Goodheart Jessica A.,Schroedl Michael,Martynov Alexander,Korshunova Tatiana,Wägele Heike,Donath Alexander

Abstract

AbstractBackgroundCladobranch sea slugs represent roughly half of the biodiversity of soft-bodied, marine gastropod molluscs (Nudibranchia) on the planet. Despite their global distribution from shallow waters to the deep sea, from tropical into polar seas, and their important role in marine ecosystems and for humans (as bioindicators and providers of medical drug leads), the evolutionary history of cladobranch sea slugs is not yet fully understood. Here, we amplify the current knowledge on the phylogenetic relationships by extending the cladobranch and outgroup taxon sampling using transcriptome data.ResultsWe generated new transcriptome data for 19 species of cladobranch sea slugs and two additional outgroup taxa. We complemented our taxon sampling with previously published transcriptome data, resulting in a final supermatrix covering 56 species from all but one accepted cladobranch superfamilies. Transcriptome assembly using six different assemblers, selection of those assemblies providing the largest amount of potentially phylogenetically informative sites, and quality-driven compilation of data sets resulted in three different supermatrices: one with a full coverage of genes per species (446 single-copy protein-coding genes) and two with a less stringent coverage (667 genes with 98.9% partition coverage and 1,767 genes with 86% partition coverage, respectively). We used these supermatrices to infer statistically robust maximum-likelihood trees. All analyses, irrespective of the data set, indicate maximum statistical support for all major splits and phylogenetic relationships on family level. The only discordance between the inferred trees is the position ofEmbletonia pulchra. Extensive testing using Four-cluster Likelihood Mapping, Approximately Unbiased tests, and Quartet Scores revealed that its position is not due to any informative phylogenetic signal, but caused by confounding signal.ConclusionsOur data matrices and the inferred trees inferred can serve as a solid foundation for future work on the taxonomy and evolutionary history of Cladobranchia. The correct placement ofE. pulchra, however, proves challenging, even with large data sets. Moreover, quartet mapping shows that confounding signal present in the data is sufficient to explain the inferred position ofE. pulchra, again leaving its phylogenetic position as an enigma.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3