Deciphering the Genome Protection Roles of Autophagy in Primary Human Dermal Fibroblasts (HDFs) against Ultraviolet-(B) –Induced Skin Photodamage

Author:

Umar Sheikh AhmadORCID,Tasduq Sheikh Abdullah

Abstract

AbstractUltraviolet-B (UV-B) exposure to skin causes photo-damage and acts as the primary etiological agent in photo-carcinogenesis. UV-B exposure induces photodamage in epidermal cells and is the major factor that challenges skin homeostasis. Autophagy allows fundamental adaptation of cells to metabolic needs and stresses. Cellular dysfunction is observed in aged tissues and in toxic insults to cells that undergo through stress. Conversely, promising anti-aging strategies aimed at inhibiting the mTOR pathway has been found to significantly improve the aging related disorders. Recently, autophagy has been found to positively regulate skin homeostasis by enhancing DNA damage recognition. Here we investigated the Geno-protective roles of autophagy in UV-B exposed primary HDFs. We found that improving autophagy levels in HDFs regulates UV-B mediated cellular stress by decreasing the formation of DNA photo adducts, alleviates oxidative and ER stress response and by regulating the expression levels of cell cycle regulatory proteins P21 and P27. Autophagy also prevents HDFs from UV-B -induced nuclear damage as is evident from Tunnel assay and Acridine Orange/Ethidium Bromide co-staining. Salubrinal, (an eIf2α inhibitor) significantly decreases the DNA damage response in HDFs. P62 silenced HDFs show enhanced DNA damage response and disturbs the tumor suppressor axis PTEN/pAKT towards damage whereas ATG7 silenced HDFs reveal an unexpected consequence by decreasing the UV-B -induced DNA damage compared to UV-B treated HDFs. Together, our results suggest that autophagy is essential in protecting skin cells from UV-B radiation -induced photo-damage and holds great promise in devising it as a suitable therapeutic strategy against skin photo-damage.HighlightsAutophagy is an immediate molecular event induced following exposure of primary HDFs to UV-B –irradiationAutophagy offers pro-survival capacity to HDFs under UV-B induced genotoxic stressAutophagy regulates DNA Damage Response via regulation of oxidative and ER stress in UV-B exposed HDFsRelieving ER stress response offers significant protection to primary HDFs from UV-B by decreasing the DNA damageAutophagy deprivation to HDFs via P62 silencing potentiates UV-B -induced DNA damage responseATG7 silencing in UV-B exposed HDFs unexpectedly alleviates the DNA Damage Response in primary HDFs

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3