SS-Detect: Development and Validation of a New Strategy for Source-Based Morphometry in Multi-Scanner Studies

Author:

Ge Ruiyang,Ding Shiqing,Keeling Tyler,Honer William G.,Frangou Sophia,Vila-Rodriguez Fidel

Abstract

ABSTRACTBackground and PurposeSource-based morphometry (SBM) has been used in multi-centre studies pooling magnetic resonance imaging (MRI) data across different scanners to advance the reproducibility of neuroscience research. In the present study, we developed an analysis strategy for Scanner-Specific Detection (SS-Detect) of SBPs in multi-scanner studies, and evaluated its performance relative to a conventional strategy.MethodsIn the first experiment, the SimTB toolbox was used to generate simulated datasets mimicking twenty different scanners with common and scanner-specific SBPs. In the second experiment, we generated one simulated SBP from empirical gray matter volume (GMV) datasets from two different scanners. Moreover, we applied two strategies to compare SBPs between schizophrenia patients’ and healthy controls’ GMV from two different scanners.ResultsThe outputs of the conventional strategy were limited to whole-sample-level results across all scanners; the outputs of SS-Detect included whole-sample-level and scanner-specific results. In the first simulation experiment, SS-Detect successfully estimated all simulated SBPs, including the common and scanner-specific SBPs whereas the conventional strategy detected only some of the whole-sample SBPs. The second simulation experiment showed that both strategies could detect the simulated SBP. Quantitative evaluations of both experiments demonstrated greater accuracy of the SS-Detect in estimating spatial SBPs and subject-specific loading parameters. In the third experiment, SS-Detect detected more significant between-group SBPs, and these SBPs corresponded with the results from voxel-based morphometry analysis, suggesting that SS-Detect has higher sensitivity in detecting between-group differences.ConclusionsSS-Detect outperformed the conventional strategy and can be considered advantageous when SBM is applied to a multi-scanner study.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3