A tale of two tails - efficient profiling of protein degraders by specific functional and target engagement readouts

Author:

Chernobrovkin Alexey L.ORCID,Cázares-Körner Cindy,Friman TomasORCID,Caballero Isabel Martin,Amadio Daniele,Molina Daniel Martinez

Abstract

AbstractTargeted protein degradation represents an area of great interest, potentially offering improvements with respect to dosing, side effects, drug resistance and reaching ‘undruggable’ proteins compared to traditional small molecule therapeutics. A major challenge in the design and characterization of degraders acting as molecular glues is that binding of the molecule to the protein of interest (PoI) is not needed for efficient and selective protein degradation, instead one needs to understand the interaction with the responsible ligase. Similarly, for proteasome targeting chimeras (PROTACs) understanding the binding characteristics of the PoI alone is not sufficient. Therefore, simultaneously assessing the binding to both PoI and the E3 ligase as well as the resulting degradation profile is of great value. The Cellular Thermal Shift Assay (CETSA) is an unbiased cell-based method, designed to investigate the interaction of compounds with their cellular protein targets by measuring compound-induced changes in protein thermal stability. In combination with mass spectrometry (MS) CETSA can simultaneously evaluate compound induced changes in the stability of thousands of proteins. We have used CETSA MS to profile a number of protein degraders, including molecular glues (e.g. IMiDs) and PROTACs to understand mode of action and to deconvolute off-target effects in intact cells. Within the same experiment we were able to monitor both target engagement by observing changes in protein thermal stability as well as efficacy by simultaneous assessment of protein abundances. This allowed us to correlate target engagement (i.e. binding to the PoI and ligases) and functional readout (i.e. degrader induced protein degradation).

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3