Identification of novel differentially expressed zooxanthellal genes from Aiptasia-Symbiodinium endosymbiosis through SDS-based RNA purification

Author:

Chen Bo-Nien,Song Paching,Chen Ming-Chyuan,Hong Ming-ChangORCID

Abstract

AbstractEndosymbiosis between dinoflagellates and cnidarian hosts first occurred more than 200 million years ago; however, symbiosis-specific genes and cellular processes involved in the establishment, maintenance, and breakdown of endosymbiosis remain unclear. Therefore, this study aimed to identify the zooxanthellal genes associated with the aforementioned biological processes during endosymbiosis in Aiptasia-Symbiodinium endosymbionts. Here, zooxanthellae isolates were treated with 0.02% SDS to decrease potential host RNA contamination and to enhance the identification of novel symbiosis/nonsymbiosis-associated differentially expressed zooxanthellal genes through suppressive subtractive hybridization (SSH) and next-generation sequencing (NGS) methods. Consequently, among 214 symbiosis-specific transcripts identified herein that displayed identity to only 5.6% of host-derived transcripts, 64% were well-known functional genes. In the nonsymbiotic stage, 181 differentially expressed transcripts were identified, of which 64.1% belonged to well-known functional genes. BLAST revealed that 8 categories of cellular processes were significantly induced in symbiotic or nonsymbiotic zooxanthellae. Together with the results of quantitative analysis, the results revealed that photosynthesis, flagellate biosynthesis and motility, stress-induced responses, cell wall biosynthesis, starch synthesis and transport, lipid biosynthesis and metabolism, host/symbiont immune response, intercellular communication, cell growth, and cell cycle regulation were the major cellular processes occurring in symbiotic/nonsymbiotic stages. The present results provide insights into the mechanisms involved in regulating the different physiological processes in symbiotic/nonsymbiotic zooxanthellae and may guide future studies.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3