Cellular mechanisms of chick limb bud morphogenesis

Author:

Lesnicar-Pucko Gaja,Belmonte Julio MORCID,Musy MarcoORCID,Glazier James A.ORCID,Sharpe JamesORCID

Abstract

SummaryAlthough some of the molecular pathways involved in limb bud morphogenesis have been identified, the cellular basis of the process is not yet understood. Proposed cell behaviours include active cell migration and oriented cell division, but ultimately, these questions can only be resolved by watching individual mesenchymal cells within a completely normal developmental context. We developed a minimally-invasive in ovo two-photon technique, to capture high quality time-lapse sequences up to 100 microns deep in the unperturbed growing chick limb bud. Using this technique, we characterized cell shapes and other oriented behaviours throughout the limb bud, and found that cell intercalation drives tissue movements, rather than oriented cell divisions or migration. We then developed a 3D cell-based computer simulation of morphogenesis, in which cellular extensions physically pull cells towards each other, with directional bias controlled by molecular gradients from the ectoderm (Wnts) and the Apical Ectodermal Ridge (FGFs). We defined the initial and target shapes of the chick limb bud in 3D by OPT scanning, and explored which orientations of mesenchymal intercalation correctly explain limb morphogenesis. The model made a couple of predictions: Firstly, that elongation can only be explained when cells intercalate along the direction towards the nearest ectoderm. This produces a general convergence of tissue towards the central proximo-distal (PD) axis of the limb, and a resultant extension of the tissue along the PD axis. Secondly, the correct in silico morphology can only be achieved if the contractile forces of mesenchymal cells in the very distal region (under the Apical Ectodermal Ridge) have shorter life times than in the rest of the limb bud, effectively making the tissue more fluid by augmenting the rate of cell rearrangement. We argue that this less-organised region of mesenchyme is necessary to prevent PD-oriented intercalation events in the distal tip that would otherwise inhibit outgrowth.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3