Evolution and Ecology in Widespread Acoustic Signaling Behavior Across Fishes

Author:

Rice Aaron N.ORCID,Farina Stacy C.ORCID,Makowski Andrea J.,Kaatz Ingrid M.,Lobel Philip S.,Bemis William E.ORCID,Bass Andrew H.ORCID

Abstract

AbstractAcoustic signaling by fishes has been recognized for millennia, but is typically regarded as comparatively rare within ray-finned fishes; as such, it has yet to be integrated into broader concepts of vertebrate evolution. We map the most comprehensive data set of volitional sound production of ray-finned fishes (Actinopterygii) yet assembled onto a family level phylogeny of the group, a clade representing more than half of extant vertebrate species. Our choice of family-level rather than species-level analysis allows broad investigation of sonifery within actinopterygians and provides a conservative estimate of the distribution and ancestry of a character that is likely far more widespread than currently known. The results show that families with members exhibiting soniferous behavior contain nearly two-thirds of actinopterygian species, with potentially more than 20,000 species using acoustic communication. Sonic fish families also contain more extant species than those without sounds. Evolutionary analysis shows that sound production is an ancient behavior because it is present in a clade that originating circa 340 Ma, much earlier than any evidence for sound production within tetrapods. Ancestral state reconstruction indicates that sound production is not ancestral for actinopterygians; instead, it independently evolved at least 27 times, compared to six within tetrapods. This likely represents an underestimate for actinopterygians that will change as sonifery is recognized in ever more species of actinopterygians. Several important ecological factors are significantly correlated with sonifery – including physical attributes of the environment, predation by members of other vertebrate clades, and reproductive tactics – further demonstrating the broader importance of sound production in the life history evolution of fishes. These findings offer a new perspective on the role of sound production and acousticcommunication during the evolution of Actinopterygii, a clade containing more than 34,000 species of extant vertebrates.

Publisher

Cold Spring Harbor Laboratory

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3