A Leaky Human Colon Model Reveals Uncoupled Apical/Basal Cytotoxicity in EarlyClostridioides difficileToxin Exposure

Author:

Ok Meryem T.ORCID,Liu Jintong,Bliton R. JarrettORCID,Hinesley Caroline M.,San Pedro Ekaterina Ellyce T.,Breau Keith A.ORCID,Gomez-Martinez IsmaelORCID,Burclaff JosephORCID,Magness Scott T.ORCID

Abstract

ABSTRACTBackground & AimsClostridioides difficile(C. difficile) toxins A (TcdA) and B (TcdB) cause antibiotic-associated colitis and increase morbidity and mortality. Accurate in vitro models are necessary to detect early toxicity kinetics, investigate disease etiology, and develop pre-clinical models for new therapies. Properties of cancer cell lines and 3D organoids inherently limit these efforts. Here, we develop adult stem cell-derived monolayers of differentiated human colonic epithelium (hCE) with barrier function, investigate the impact of toxin application to apical/basal aspects of monolayers, and evaluate whether a leaky epithelial barrier enhances toxicity.MethodsSingle-cell RNA-sequencing (scRNAseq) mappedC. difficile-relevant genes to cell lineages across the human gut. Transcriptomics informed timing of stem cell differentiation to achieve in vitro colonocyte maturation like that observed in vivo. Transepithelial electrical resistance (TEER) and fluorescent dextran permeability assays measured cytotoxicity as barrier loss post-toxin exposure. Leaky epithelial barriers were induced with diclofenac.ResultsscRNAseq demonstrated broad and variable toxin receptor expression across the human gut lineages. Absorptive colonocytes displayed generally enhanced toxin receptor, Rho GTPase, and cell junction expression. 21-day differentiated Caco-2 cells remained immature whereas hCE monolayers were similar to mature colonocytes. hCE monolayers exhibited high barrier function after 1-day differentiation. Basal TcdA/B application to monolayers caused more toxicity and apoptosis than apical exposure. Diclofenac induced leaky hCE monolayers and enhanced toxicity of apical TcdB exposure.ConclusionsApical/basal toxicities are uncoupled with more rapid onset and increased magnitude of basal toxicity. Leaky paracellular junctions enhance toxicity of apical TcdB exposure. hCE monolayers represent a physiologically relevant and sensitive culture system to evaluate the impact of microbial toxins on gut epithelium.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3