Identifying patients with rapid progression from hormone-sensitive to castration-resistant prostate cancer: a retrospective study

Author:

Pan Chenxi,He Yi,Wang He,Yu Yang,Li Lu,Huang Lingling,Lyu Mengge,Ge Weigang,Yang Bo,Sun Yaoting,Guo Tiannan,Liu Zhiyu

Abstract

AbstractBackgroundProstate cancer (PCa) is the second most prevalent malignancy and the fifth cause of cancer-related deaths in men. A crucial challenge is identifying the population at risk of rapid progression from hormone-sensitive PCa (HSPC) to the lethal castration-resistant PCa (CRPC).MethodsWe collected 78 HSPC biopsies and measured their proteomes using pressure cycling technology and a pulsed data-independent acquisition pipeline. The proteomics data and clinical metadata were used to generate models for classifying HSPC patients and predicting the development of each case.ResultsWe quantified 7,961 proteins using the HSPC biopsies. A total of 306 proteins were differentially expressed between patients with a long- or short-term progression to CRPC. Using a random forest model, we identified ten proteins that significantly discriminated long-from short-term cases, which were used to classify PCa patients with an 86% accuracy. Next, two clinical parameters (Gleason sum and total PSA) and five proteins (DPT, ARGEF1, UTP23, CMAS, and ANAPC4) were found to be significantly associated with rapid disease progression. A nomogram model using these seven features was generated for stratifying patients into groups with significant progression disparities (p-value = 5.2 × 10−9).ConclusionWe identified proteins associated with a fast progression to CRPC and an unfavorable prognosis. Based on these proteins, our machine learning and nomogram models stratified HSPC into high- and low-risk groups and predict their prognoses. These tools may aid clinicians in predicting the progression of patients, guiding individualized clinical management and decisions.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3