Century-long timelines of herbarium genomes predict plant stomatal response to climate change

Author:

Lang Patricia L.M.ORCID,Erberich Joel M.ORCID,Lopez LuaORCID,Weiß Clemens L.ORCID,Amador GabrielORCID,Fung Hannah F.ORCID,Latorre Sergio M.ORCID,Lasky Jesse R.ORCID,Burbano Hernán A.ORCID,Expósito-Alonso MoisésORCID,Bergmann DominiqueORCID

Abstract

AbstractDissecting plant responses to the environment is key to understanding if and how plants adapt to anthropogenic climate change. Stomata, plants’ pores for gas exchange, are expected to decrease in density following increased CO2concentrations, a trend already observed in multiple plant species. However, it is unclear if such responses are based on genetic changes and evolutionary adaptation. Here we make use of extensive knowledge of 43 genes in the stomatal development pathway and newly generated genome information of 191A. thalianahistorical herbarium specimens collected over the last 193 years to directly link genetic variation with climate change. While we find that the essential transcription factors SPCH, MUTE and FAMA, central to stomatal development, are under strong evolutionary constraints, several regulators of stomatal development show signs of local adaptation in contemporary samples from different geographic regions. We then develop a polygenic score based on known effects of gene knock-out on stomatal development that recovers a classic pattern of stomatal density decrease over the last centuries without requiring direct phenotype observation of historical samples. This approach combining historical genomics with functional experimental knowledge could allow further investigations of how different, even in historical samples unmeasurable, cellular plant phenotypes have already responded to climate change through adaptive evolution.One sentence summaryUsing a molecular-knowledge based genetic phenotype proxy, historical whole-genomeA. thalianatimelines compared with contemporary data indicate a shift of stomatal density following climate-associated predictions.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3