Origin, exposure routes and xenobiotics impart nanoplastics with toxicity on freshwater bivalves

Author:

Arini AdelineORCID,Muller Sandra,Coma VéroniqueORCID,Grau EtienneORCID,Sandre OlivierORCID,Baudrimont MagalieORCID

Abstract

AbstractVarious environmental aged plastic wastes were collected in the environment and crushed to the nanometric scale to get a mix of nanoplastics (NPs) of different natures – mostly polyolefins (PE, PP), polyesters (PET) and polyvinylics (PS and PVC) – and undefined shapes (noted NP-L, mean hydrodynamic diameter at 285 nm). We aimed to test the toxicity of NPs of environmentally relevance on freshwater bivalves and compare results to commonly used styrenic NP-PS (206 nm).Corbicula flumineawere exposed to four different conditions with NPs (0.008 to 10 μg/L), for 21 days and kept under depuration conditions for 21 additional days: 1) waterborne exposure to NP-L, 2) diet borne exposure to NP-L, 3) synergic waterborne exposure to NP-L and AlCl3salt (1 mg/L), 4) waterborne exposure to NP-PS. Enzyme activities, gene expressions and behavioural tests were assessed. Trophic and synergic exposures with Al triggered more gene modulations than direct exposure to NP-L (namely on12s, atg12, gal, segpx, p53andache). NP-PS were also more harmful than NP-L, but only at high concentrations (10 μg/L). The effects of each treatment lasted until 7 days of depuration and no more gene inductions were observed after 21 days in clean water. Very few effects were shown on phenol-oxidase (PO), and glutathione S-transferase (GST). However, the inhibition of acetylcholinesterase (AchE) was concomitant with an increase of the filtration activity of bivalves exposed to NP-L (trophic route) and NP-PS, suggesting neurotoxic effects. By disturbing the ventilatory activity, NPs could have direct effects on xenobiotic accumulation and excretion capacities. The results point out how the structure, aging, exposure routes and additional xenobiotics can interact with adverse outcomes of NPs in bivalves. These findings underline the importance to consider naturally aged environmental NPs in ecotoxicological studies rather than synthetic latexes,i.e. crosslinked nanospheres prepared from virgin polymers.This manuscript presents the first data of toxicity on freshwater organisms exposed to nanoplastics coming from natural sources. Whereas the majority of papers are dealing with non-environmentally representative plastics (mainly commercially-available polystyrene latexes) to evaluate nanoplastic effects on organisms, this study develops methods to prepare model nanoplastics from plastic wastes collected in rivers, and to assess their real adverse effects on aquatic organisms. Our results show significant differences between the inflammatory effects triggered by nanoplastics coming from natural sources and polystyrene nanobeads. This work suggests that the data published so far in the literature may underestimate the toxicity of nanoplastics spread into the environment on the aquatic organisms at the bottom of the food chain, which might consequently impart halieutic resources on the long term.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3