Radiomics analysis to predict pulmonary nodule malignancy using machine learning approaches

Author:

Warkentin Matthew T.ORCID,Al-Sawaihey Hamad,Lam Stephen,Liu Geoffrey,Diergaarde Brenda,Yuan Jian-Min,Wilson David O.,Tammemägi Martin C.,Atkar-Khattra Sukhinder,Grant Benjamin,Brhane Yonathan,Khodayari-Moez Elham,Campbell Kieran R.,Hung Rayjean J.ORCID

Abstract

AbstractPurposeScreening with low-dose computed tomography can reduce lung cancer-related mortality. However, most screen-detected pulmonary abnormalities do not develop into cancer and it remains challenging to identify high-risk nodules among those with indeterminate appearance. We aim to develop and validate prediction models to discriminate between benign and malignant pulmonary lesions based on radiological features.MethodsUsing four international lung cancer screening studies, we extracted 2,060 radiomic features for each of 16,797 nodules among 6,865 participants. After filtering out redundant and low-quality radiomic features, 642 radiomic and 9 epidemiologic features remained for model development. We used cross-validation and grid search to assess three machine learning models (XGBoost, Random Forest, LASSO) for their ability to accurately predict risk of malignancy for pulmonary nodules. We fit the top-performing ML model in the full training set. We report model performance based on the area under the curve (AUC) and calibration metrics in the held-out test set.ResultsThe ML models that yielded the best predictive performance in cross-validation were XGBoost and LASSO, and among these models, LASSO had superior model calibration, which we considered to be the optimal model. We fit the final LASSO model based on the optimized hyperparameter from cross-validation. Our radiomics model was both well-calibrated and had a test-set AUC of 0.930 (95% CI: 0.901-0.957) and out-performed the established Brock model (AUC=0.868, 95% CI: 0.847-0.888) for nodule assessment.ConclusionWe developed highly-accurate machine learning models based on radiomic and epidemiologic features from four international lung cancer screening studies that may be suitable for assessing suspicious, but indeterminate, screen-detected pulmonary nodules for risk of malignancy.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3