SiRNA Molecules as Potential RNAi Therapeutics to Silence RdRP Region and N-Gene of SARS-CoV-2: An In Silico Approach

Author:

Hasan Mahedi,Tasnim Atiya Tahira,Ashik Arafat Islam,Chowdhury Md Belal,Nishat Zakia Sultana,Fariha Khandaker Atkia,Hossain Tanvir,Ahmed Shamim

Abstract

AbstractCOVID-19 pandemic keeps pressing onward and effective treatment option against it is still far-off. Since the onslaught in 2020, 13 different variants of SARS-CoV-2 have been surfaced including 05 different variants of concern. Success in faster pandemic handling in the future largely depends on reinforcing therapeutics along with vaccines. As a part of RNAi therapeutics, here we developed a computational approach for predicting siRNAs, which are presumed to be intrinsically active against two crucial mRNAs of SARS-CoV-2, the RNA-dependent RNA polymerase (RdRp), and the nucleocapsid phosphoprotein gene (N gene). Sequence conservancy among the alpha, beta, gamma, and delta variants of SARS-CoV-2 was integrated in the analyses that warrants the potential of these siRNAs against multiple variants. We preliminary found 13 RdRP-targeting and 7 N gene-targeting siRNAs using the siDirect V.2.0. These siRNAs were subsequently filtered through different parameters at optimum condition including macromolecular docking studies. As a result, we selected 4 siRNAs against the RdRP and 3 siRNAs against the N-gene as RNAi candidates. Development of these potential siRNA therapeutics can significantly synergize COVID-19 mitigation by lessening the efforts, furthermore, can lay a rudimentary base for the in silico design of RNAi therapeutics for future emergencies.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3