A machine learning based approach towards high-dimensional mediation analysis

Author:

Nath TanmayORCID,Caffo Brian,Wager Tor,Lindquist Martin A.

Abstract

Mediation analysis is used to investigate the role of intermediate variables (mediators) that lie in the path between an exposure and an outcome variable. While significant research has focused on developing methods for assessing the influence of mediators on the exposure-outcome relationship, current approaches do not easily extend to settings where the mediator is high-dimensional. These situations are becoming increasingly common with the rapid increase of new applications measuring massive numbers of variables, including brain imaging, genomics, and metabolomics. In this work, we introduce a novel machine learning based method for identifying high dimensional mediators. The proposed algorithm iterates between using a machine learning model to map the high-dimensional mediators onto a lower-dimensional space, and using the predicted values as input in a standard three-variable mediation model. Hence, the machine learning model is trained to maximize the likelihood of the mediation model. Importantly, the proposed algorithm is agnostic to the machine learning model that is used, providing significant flexibility in the types of situations where it can be used. We illustrate the proposed methodology using data from two functional Magnetic Resonance Imaging (fMRI) studies. First, using data from a task-based fMRI study of thermal pain, we combine the proposed algorithm with a deep learning model to detect distributed, network-level brain patterns mediating the relationship between stimulus intensity (temperature) and reported pain at the single trial level. Second, using resting-state fMRI data from the Human Connectome Project, we combine the proposed algorithm with a connectome-based predictive modeling approach to determine brain functional connectivity measures that mediate the relationship between fluid intelligence and working memory accuracy. In both cases, our multivariate mediation model links exposure variables (thermal pain or fluid intelligence), high dimensional brain measures (single-trial brain activation maps or resting-state brain connectivity) and behavioral outcomes (pain report or working memory accuracy) into a single unified model. Using the proposed approach, we are able to identify brain-based measures that simultaneously encode the exposure variable and correlate with the behavioral outcome.I.HIGHLIGHTSCurrent methods for assessing mediation do not easily extend to high dimensionsWe introduce a new approach for performing high-dimensional mediation analysisLinks high-dimensional mediator to path analysis model via machine learning algorithmMethod illustrated using data from two fMRI studies

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3