Flaver: mining transcription factors in genome-wide transcriptome profiling data using weighted rank correlation statistics

Author:

Huang TinghuaORCID,Huang Xinmiao,Wang Binyu,He Hao,Yao Min,Gao Xuejun

Abstract

AbstractBackgroundMining key transcription factors (TFs) in genome-wide transcriptome profiling data has been an active research area for many years and it has been partially solved by mathematically modelling the ranking orders of genes in the target gene-set for the TF of interest in the gene-list ranked by expression values, called gene-set enrichment analysis (GSEA). However, in some application scenarios the gene-set itself also has a rank attribute, such as the putative target gene-set predicted by the Grit software and other alternatives like FIMO and Pscan. New algorithms must be developed to analyze these data properly.Methodology/Principal FindingsBy implementing the weighted Kendall’s tau statistic, we proposed a method for genome-wide transcriptome profiling data mining that can identify the key TFs orchestrating a profile. Theoretical properties of the proposed method were established, and its advantages over the GSEA approach were demonstrated when analyzing the RNA-Atlas datasets. The results showed that the top-rated TFs by our method always have experimentally supported evidences in the literatures. Benchmarking using gene ontology (GO) annotations in the AmiGO database indicated that the geometry performance (SQR_P) of our method is higher than GSEA in more than 14% of the cases.SignificanceThe developed method is suitable for analyzing the significance of overrepresentation of ranked gene-sets in a ranked gene-list. A software implementing the method, called “Flaver”, was developed and is publicly available at http://www.thua45.cn/flaver under an academic free license.Author SummaryIdentification of the regulation roles of TFs in the transcriptome is fundamental in understanding various biological processes. Improve the performance of the prediction tools is important because accurate TF-mining in transcriptome data can finely improve the efficiency of wet-lab experiments. Also, genome wide TF-mining can provide new target genes for transcriptome regulation analysis in system biology perspective. This study developed a new TF-mining tool based on weighted rank correlation statistical method. The tool has better performance in analyzing ranked gene-set and ranked gene-list than its competitor, the GSEA tool. It can help the researchers in identification of the most important TFs in transcriptional data.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3