Differential requirement for BRCA1-BARD1 E3 ubiquitin ligase activity in DNA damage repair and meiosis in the Caenorhabditis elegans germ line

Author:

Li Qianyan,Kaur Arshdeep,Okada Kyoko,McKenney Richard J.,Engebrecht JoAnneORCID

Abstract

AbstractThe tumor suppressor BRCA1-BARD1 complex functions in many cellular processes; of critical importance to its tumor suppressor function is its role in genome integrity. Although RING E3 ubiquitin ligase activity is the only known enzymatic activity of the complex, the in vivo requirement for BRCA1-BARD1 E3 ubiquitin ligase activity has been controversial. Here we probe the role of BRCA1-BARD1 E3 ubiquitin ligase activity in vivo using C. elegans. Genetic, cell biological, and biochemical analyses of mutants defective for E3 ligase activity reveal both E3 ligase-dependent and independent functions of the complex in the context of DNA damage repair and meiosis. We show that E3 ligase activity is essential for BRCA1-BARD1 to concentrate at both DNA damage and recombination sites in meiotic germ cells, but not at DNA damage sites in proliferating germ cells. While BRCA1 alone is capable of monoubiquitylation, BARD1 is required with BRCA1 to promote polyubiquitylation. We find that the requirement for E3 ligase activity and BARD1 in DNA damage signaling and repair can be partially alleviated by driving the nuclear accumulation and self-association of BRCA1. Our data suggest that in addition to E3 ligase activity, BRC-1 serves a structural role for DNA damage signaling and repair while BRD-1 plays an accessory role to enhance BRC-1 function.Author SummaryBRCA1-BARD1 is a E3 ubiquitin ligase, which modifies proteins by the addition of the small protein ubiquitin. While mutations that disrupt E3 ligase activity and stability of the BRCA1-BARD1 complex lead to a predisposition for breast and ovarian cancer, the specific requirement for E3 ligase activity in tumor suppression is not known. Here we probe the function of E3 ligase activity and BARD1 in the maintenance of genome integrity by engineering point mutations that disrupt E3 ligase activity in C. elegans BRCA1 as well as a null mutation in BARD1. We find that while E3 ligase activity is important for genome integrity, the complex plays additional roles besides ubiquitylating proteins. Further, our data suggest that BRCA1 is the key functional unit of the complex while BARD1 is an accessory partner that enhances BRCA1’s function. These findings may help explain why there is a higher prevalence of cancer-causing mutations in BRCA1 compared to BARD1.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3