State-specific individualized functional networks form a predictive signature of brain state

Author:

Salehi MehravehORCID,Karbasi Amin,Barron Daniel S.,Scheinost Dustin,Todd Constable R.

Abstract

AbstractThere is extensive evidence that human brain functional organization is dynamic, varying within a subject as the brain switches between tasks demands. This functional organization also varies across subjects, even when they are all engaged in similar tasks. Currently, we lack a comprehensive model that unifies the two dimensions of variation (brain state and subject). Using fMRI data obtained across multiple task-evoked and rest conditions (which we operationally define as brain states) and across multiple subjects, we develop a state-and subject-specific functional network parcellation (the assignment of nodes to networks). Our parcellation approach provides a measure of how node-to-network assignment (NNA) changes across states and across subjects. We demonstrate that the brain’s functional networks are not spatially fixed, but reconfigure with brain state. This reconfiguration is robust and reliable to such an extent that it can be used to predict brain state with accuracies up to 97%.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3