Checkpoint non-fidelity induces a complex landscape of lineage fitness after DNA damage

Author:

Campbell Callum J.,Venkitaraman Ashok R.,Esposito AlessandroORCID

Abstract

AbstractDNA damage in proliferating mammalian cells causes death1, senescence2 or continued survival, via checkpoints that monitor damage and regulate cell cycle progression, DNA repair and fate determination3. Cell cycle checkpoints facilitate tumour suppression by preventing the generation of proliferating mutated cells4, particularly by blocking passage of DNA lesions into replication and mitosis5. While checkpoint non-fidelity permits cells to carry genomic aberrations into subsequent cell cycle phases6, its long-term consequences on lineages descendant from damaged cells remains poorly characterised. Devising methods for microscopy-based lineage tracing, we unexpectedly demonstrate that transient DNA damage to single living cells bearing a negligent checkpoint induces heterogenous cell-fate outcomes in their descendant generations removed from the initial insult. After transiently damaged cells undergo an initial arrest, pairs of descendant cells without obvious cell-cycle abnormalities either divide or die in a seemingly stochastic way. Progeny of transiently damaged cells may die generations afterwards, creating considerable variability of lineage fitness that promotes overall persistence in a mutagenic environment. Descendants of damaged cells frequently form micronuclei, activating immunogenic signalling. Our findings reveal previously unrecognized, heterogenous effects of cellular DNA damage that manifest long afterwards in descendant cells. We suggest that these heterogenous descendant cell-fate responses may function physiologically to ensure the elimination and immune clearance of damaged cell lineages, but pathologically, may enable the prolonged survival of cells bearing mutagenic damage.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3