The BSGatlas: An enhanced annotation of genes and transcripts for the Bacillus subtilis genome with improved information access

Author:

Geissler Adrian Sven,Anthon Christian,González-Tortuero Enrique,Poulsen Line Dahl,Kallehauge Thomas Beuchert,Seemann Stefan Ernst,Vinther Jeppe,Gorodkin Jan

Abstract

AbstractThe genome of Bacillus subtilis continues to provide exiting genomic insights. However, the growing collective genomic knowledge about this micro-organism is spread across multiple annotation resources. Thus, the full annotation is not directly accessible neither for specific genes nor for large-scale high-throughput analyses. Furthermore, access to annotation of non-coding RNA genes (ncRNAs) and polycistronic mRNAs is difficult. To address these challenges we introduce the Bacillus subtilis genome atlas, BSGatlas, in which we integrate and unify multiple existing annotation resources. Our integration provides twice as many ncRNAs than the individual resources, improves the positional annotation for 70% of the combined ncRNAs, and makes it possible to infer specific ncRNA types. Moreover, we unify known transcription start sites, termination, and transcriptional units (TUs) as a comprehensive transcript map. This transcript map implies 815 new TUs and 6, 164 untranslated regions (UTRs), which is a five-fold increase over existing resources. We furthermore, find 2, 309 operons covering the transcriptional annotation for 93% of all genes, corresponding to an improvement by 11%. The BSGatlas is available in multiple formats. A user can either download the entire annotation in the standardized GFF3 format, which is compatible with most bioinformatics tools for omics and high-throughput studies, or view the annotation in an online browser at http://rth.dk/resources/bsgatlas.ImportanceThe Bacillus subtilis genome has been studied in numerous context and consequently multiple efforts have been made in providing a complete annotation. Unfortunately, a number of resources are no longer maintained, and (i) the collective annotation knowledge is dispersed over multiple resources, of which each has a different focus of what type of annotation information they provide. (ii) Thus, it is difficult to easily and at a large scale obtain information for a genomic region or genes of interest. (iii) Furthermore, all resources are essentially incomplete when it comes to annotating non-coding and structured RNA, and transcripts in general. Here, we address all three problems by first collecting existing annotations of genes and transcripts start and termination sites; afterwards resolving discrepancies in annotations and combining them, which doubled the number of ncRNAs; inferring full transcripts and 2,309 operons from the combined knowledge of known transcript boundaries and meta-information; and critically providing it all in a standardized UCSC browser. That interface and its powerful set of functionalities allow users to access all the information in a single resource as well as enables them to include own data on top the full annotation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3